
Isochronous USB I/O on Windows
Although the issue does not come up often, it seems that everyone who tries
to do isochronous USB I/O in a
Windows driver gets it wrong. Isochronous
URBs do work very differently from bulk and interrupt requests
(which, as
it happens, are identical). This article is an attempt to point out the
differences.

Bulk - Buffer-oriented

Bulk and interrupt requests are buffer-oriented. If you want to read
10,000 bytes, you submit an URB where
the TransferBuffer points to a 10,000
byte buffer, and you set TransferBufferLength to 10,000. The host
controller hardware will hold on to your request until those 10,000 bytes
are all handled, no matter how long
it takes or how many retries it
requires. You don't particular need to worry about the endpoint's packet
size,
although a careful driver writer will always ensure tht the buffer is
an even multiple of the packet size (bulk
packets in a high-speed device
are always 512 bytes).

Isochronous -- Packet-oriented

Isochronous requests are packet-oriented, and YOU are responsible to chop
up your buffer into packet-sized
chunks. This is done with the IsoPacket
array in the URB_ISOCH_TRANSFER structure. Each element in
the IsoPacket
array must include the offset of the start of the packet within the
TransferBuffer, and the size of
this packet. Further the size of each element in the array must be the same size as the packet size of your
endpoint (or larger, although there is little point in doing so).

So, for a device with 512-byte packets, where we want 8 packets per URB, we might set:

URB_ISOCH_TRANSFER urb;

RtlZeroMemory(&urb, sizeof(URB_ISOCH_TRANSFER));

...

urb.TransferBuffer = ExAllocatePool(..., 4096);

urb.TransferBufferLength = 4096;

urb.NumberOfPackets = 8;

urb.IsoPacket[0].Offset = 0;

urb.IsoPacket[0].Length = 512;

urb.IsoPacket[1].Offset = 512;

urb.IsoPacket[1].Length = 512;

urb.IsoPacket[2].Offset = 1024;

urb.IsoPacket[2].Length = 512;

...

urb.IsoPacket[7].Offset = 3584;

urb.IsoPacket[7].Length = 512;

Of course, you would usually do that setup in a loop, instead of
explicitly, like that. That's especially true if
you have a device with
several alternate settings for different bandwidth requirements, which is
implemented
by having different packet sizes for the isochronous endpoint.

When the request is completed and your completion handler is called, the
Length and Error fields in the
IsoPacket array will have been modified by
the host controller driver.

Full-speed Packeting

Isochronous endpoints on a full-speed device can have a maximum packet size
up to 1023 bytes. Yes, that's
1023 bytes, not 1024. The reasons for this
oddness have been lost in the mists of antiquity. A single URB can
cover
up to 255 frames.

High-speed Packeting

For a high-speed device, there are a couple of twists.
The USB spec allows a high-speed isoch
endpoint to
specify 1, 2, or 3 transfers per microframe, which increases
the bandwidth for the endpoint. As far as a driver
is concerned, this just
increases the size of the packet. A maximum bandwidth isochronous endpoint
has 3
transfers of 1024 bytes per microframe. This means that your device
has 3072-byte packets, so your
IsoPacket array must be set up in 3072-byte
units.

Further, each isochronous URB for a high-speed device must cover a
multiple of full frames, meaning a
multiple of 8 microframes. So, if
your device specifies an interval of 1 (bInterval == 1), meaning that
bandwidth is reserved in every microframe, your URB must have a multiple of
8 packets. If the interval is 2
(bInterval == 2), your URB must have a
multiple of 4 packets. If the interval is 4 (bInterval == 3), your URB
must have an even number of packets. If the interval is 8 or more
(bInterval >= 4), there is no limitation on
the number of packets.

Packet Array

The packets in your array will
be associated with one frame or microframe, one at a time, in order. If you
have 10 packets in your array, your URB will last for exactly 10
frames (or microframes) and then be
completed. This has several important
implications for handling the buffer in your completion handler.
Isochronous requests do not automatically retry; if a bus error occurs
during an isochronous transfer, that
packet is discarded. In that case,
the Length fields in the corresponding IsoPacket array element will be 0.
Further, it's quite common for a device to return less than the maximum
packet size in a single transfer
(especially for audio devices). Again,
the Length field will tell you how many bytes were actually transferred
during that frame or microframe.

However, the hardware does not pack the data in the buffer. This is one of
the biggest surprises for people
just starting into isochronous work.

Here's an example. Let's start from the request we set up above, with 8
packets of 512 bytes. Now, let's say
the device transfered two full
packets, followed by a short packet of 128 bytes, followed by a skipped
frame,
followed by a short packet of 300 bytes, followed by another skipped
packet, followed by two more full
packets. So, the size of the packets are
512, 512, 128, 0, 300, 0, 512, 512.

The start of our data buffer will have 1152 bytes of data (512+512+128),
followed by 896 bytes of empty
space, followed by 300 bytes of data,
followed by 724 bytes of empty space, followed by 1024 bytes of data.
So,
even though the packet contains 2476 bytes of data, that data is spread
sparsely through the buffer. If you
need to return a contiguous buffer to
your caller (a common need), you will have to copy the fragments
yourself
into an output buffer. In the following diagram, the white areas are regions that contain good data,
while the shaded areas contain unknown
garbage.

Written by Tim Roberts.

